direct product, metabelian, soluble, monomial, A-group
Aliases: C2×S3×C32⋊C4, C33⋊1(C22×C4), C33⋊C4⋊2C22, (S3×C3×C6)⋊2C4, (S3×C3⋊S3)⋊2C4, C3⋊S3⋊5(C4×S3), (C3×C6)⋊5(C4×S3), (C32×C6)⋊(C2×C4), C6⋊1(C2×C32⋊C4), (C6×C32⋊C4)⋊6C2, C32⋊10(S3×C2×C4), (C2×C3⋊S3).38D6, C3⋊1(C22×C32⋊C4), (S3×C32)⋊1(C2×C4), (C2×C33⋊C2)⋊2C4, C33⋊C2⋊1(C2×C4), (C2×C33⋊C4)⋊5C2, C3⋊S3.6(C22×S3), (C3×C3⋊S3).5C23, (S3×C3⋊S3).3C22, (C3×C32⋊C4)⋊3C22, (C6×C3⋊S3).32C22, (C2×S3×C3⋊S3).3C2, (C3×C3⋊S3)⋊4(C2×C4), SmallGroup(432,753)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C3×C3⋊S3 — S3×C3⋊S3 — S3×C32⋊C4 — C2×S3×C32⋊C4 |
C33 — C2×S3×C32⋊C4 |
Generators and relations for C2×S3×C32⋊C4
G = < a,b,c,d,e,f | a2=b3=c2=d3=e3=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fef-1=de=ed, fdf-1=d-1e >
Subgroups: 1632 in 192 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, D6, D6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C33, C32⋊C4, C32⋊C4, S32, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C2×C4, S3×C32, C3×C3⋊S3, C33⋊C2, C32×C6, C2×C32⋊C4, C2×C32⋊C4, C2×S32, C22×C3⋊S3, C3×C32⋊C4, C33⋊C4, S3×C3⋊S3, S3×C3×C6, C6×C3⋊S3, C2×C33⋊C2, C22×C32⋊C4, S3×C32⋊C4, C6×C32⋊C4, C2×C33⋊C4, C2×S3×C3⋊S3, C2×S3×C32⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, C22×S3, C32⋊C4, S3×C2×C4, C2×C32⋊C4, C22×C32⋊C4, S3×C32⋊C4, C2×S3×C32⋊C4
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 17)(12 18)(13 24)(14 21)(15 22)(16 23)
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 7)(2 8)(3 5)(4 6)(9 22)(10 23)(11 24)(12 21)(13 17)(14 18)(15 19)(16 20)
(1 21 20)(2 17 22)(3 18 23)(4 24 19)(5 14 10)(6 11 15)(7 12 16)(8 13 9)
(2 22 17)(4 19 24)(6 15 11)(8 9 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,17)(14,18)(15,19)(16,20), (1,21,20)(2,17,22)(3,18,23)(4,24,19)(5,14,10)(6,11,15)(7,12,16)(8,13,9), (2,22,17)(4,19,24)(6,15,11)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,17)(14,18)(15,19)(16,20), (1,21,20)(2,17,22)(3,18,23)(4,24,19)(5,14,10)(6,11,15)(7,12,16)(8,13,9), (2,22,17)(4,19,24)(6,15,11)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,17),(12,18),(13,24),(14,21),(15,22),(16,23)], [(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,7),(2,8),(3,5),(4,6),(9,22),(10,23),(11,24),(12,21),(13,17),(14,18),(15,19),(16,20)], [(1,21,20),(2,17,22),(3,18,23),(4,24,19),(5,14,10),(6,11,15),(7,12,16),(8,13,9)], [(2,22,17),(4,19,24),(6,15,11),(8,9,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,1310);
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 3 | 3 | 9 | 9 | 27 | 27 | 2 | 4 | 4 | 8 | 8 | 9 | 9 | 9 | 9 | 27 | 27 | 27 | 27 | 2 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 |
36 irreducible representations
Matrix representation of C2×S3×C32⋊C4 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 | 12 |
0 | 0 | 12 | 1 | 12 | 12 |
0 | 0 | 12 | 1 | 0 | 12 |
0 | 0 | 12 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 12 | 0 |
0 | 0 | 12 | 1 | 12 | 12 |
0 | 0 | 0 | 1 | 12 | 12 |
0 | 0 | 12 | 1 | 0 | 12 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 5 | 0 |
0 | 0 | 0 | 8 | 5 | 5 |
0 | 0 | 8 | 5 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,12,0,0,1,1,1,1,0,0,12,12,0,12,0,0,12,12,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,12,0,0,1,1,1,1,0,0,12,12,12,0,0,0,0,12,12,12],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,8,8,0,8,0,0,0,0,8,5,0,0,0,5,5,0,0,0,0,0,5,0] >;
C2×S3×C32⋊C4 in GAP, Magma, Sage, TeX
C_2\times S_3\times C_3^2\rtimes C_4
% in TeX
G:=Group("C2xS3xC3^2:C4");
// GroupNames label
G:=SmallGroup(432,753);
// by ID
G=gap.SmallGroup(432,753);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,64,1411,165,1356,530,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^3=e^3=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*e*f^-1=d*e=e*d,f*d*f^-1=d^-1*e>;
// generators/relations